Heteroduplex joint formation free of net topological change by Mhr1, a mitochondrial recombinase.

نویسندگان

  • Feng Ling
  • Minoru Yoshida
  • Takehiko Shibata
چکیده

Homologous pairing, an essential process for homologous recombination, is the formation of a heteroduplex joint by an invading single-stranded DNA tail and a complementary sequence within double-stranded DNA (dsDNA). The base rotation of the parental dsDNA, to switch from parental base pairs to heteroduplex ones with the invading single-stranded DNA, sterically requires vertical extension between adjacent base pairs, which inevitably induces untwisting of the dsDNA. RecA is a prototype of the RecA/Rad51/Dmc1 family proteins, which promote ATP-dependent homologous pairing in homologous DNA recombination in vivo, except in mitochondria. As predicted by the requirement for the untwisting, dsDNA bound to RecA is extended and untwisted, and homologous pairing by RecA in vitro is extensively stimulated by the negative supercoils of dsDNA substrates. D-loop formation in negatively supercoiled dsDNA, which serves as an assay for homologous pairing, is also catalyzed in an ATP-independent manner by proteins structurally unrelated to RecA, such as Mhr1. Mhr1 is required for yeast mitochondrial DNA recombination instead of RecA family proteins. Inconsistent with the topological requirements, tests for the effects of negative supercoils revealed that Mhr1 catalyzes homologous pairing with relaxed closed circular dsDNA much more efficiently than with negatively supercoiled dsDNA. Topological analyses indicated that neither the process nor the products of homologous pairing by Mhr1 involve a net topological change of closed circular dsDNA. This would be favorable for homologous recombination in mitochondria, where dsDNA is unlikely to be under topological stress toward unwinding. We propose a novel topological mechanism wherein Mhr1 induces untwisting without net topological change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA.

Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activit...

متن کامل

A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA.

A nuclear recessive mutant in Saccharomyces cerevisiae, mhr1-1, is defective in mitochondrial genetic recombination at 30 degrees C and shows extensive vegetative petite induction by UV irradiation at 30 degrees C or when cultivated at a higher temperature (37 degrees C). It has been postulated that mitochondrial DNA (mtDNA) is oxidatively damaged by by-products of oxidative respiration. Since ...

متن کامل

Din7 and Mhr1 expression levels regulate double-strand-break–induced replication and recombination of mtDNA at ori5 in yeast

The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cer...

متن کامل

Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem.

Because the individual strands of DNA are intertwined, formation of heteroduplex structures between duplexes--as in presumed recombination intermediates--presents a topological puzzle, known as the winding problem. Previous approaches to this problem have assumed that single-strand breaks are required to permit formation of fully coiled heteroduplexes. This paper describes a simple, nick-free s...

متن کامل

Hepatocyte specific RNase H1 knockout mice: Clarifying functions of mammalian RNase H1

Human RNase H1 cleaves RNA only when the RNA is present in a DNA-RNA heteroduplex. Previous efforts to create RNase H1 knockout mice resulted in embryonic lethality1, but demonstrated that RNase H1 is required for mitochondrial function. We constructed viable constitutive hepatocyte liver specific RNase H1 knock out mice by coupling the Cre recombinase to an albumin promoter as albumin is not e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 14  شماره 

صفحات  -

تاریخ انتشار 2009